\(\int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx\) [549]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 22, antiderivative size = 22 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\text {Int}\left (\frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2},x\right ) \]

[Out]

Unintegrable(1/(a+b*arccosh(c*x))^2/(e*x^2+d)^(1/2),x)

Rubi [N/A]

Not integrable

Time = 0.03 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx \]

[In]

Int[1/(Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^2),x]

[Out]

Defer[Int][1/(Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^2), x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 10.97 (sec) , antiderivative size = 24, normalized size of antiderivative = 1.09 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx \]

[In]

Integrate[1/(Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^2),x]

[Out]

Integrate[1/(Sqrt[d + e*x^2]*(a + b*ArcCosh[c*x])^2), x]

Maple [N/A] (verified)

Not integrable

Time = 1.31 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.91

\[\int \frac {1}{\left (a +b \,\operatorname {arccosh}\left (c x \right )\right )^{2} \sqrt {e \,x^{2}+d}}d x\]

[In]

int(1/(a+b*arccosh(c*x))^2/(e*x^2+d)^(1/2),x)

[Out]

int(1/(a+b*arccosh(c*x))^2/(e*x^2+d)^(1/2),x)

Fricas [N/A]

Not integrable

Time = 0.30 (sec) , antiderivative size = 67, normalized size of antiderivative = 3.05 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {1}{\sqrt {e x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b*arccosh(c*x))^2/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x^2 + d)/(a^2*e*x^2 + a^2*d + (b^2*e*x^2 + b^2*d)*arccosh(c*x)^2 + 2*(a*b*e*x^2 + a*b*d)*arcco
sh(c*x)), x)

Sympy [N/A]

Not integrable

Time = 1.98 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {1}{\left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{2} \sqrt {d + e x^{2}}}\, dx \]

[In]

integrate(1/(a+b*acosh(c*x))**2/(e*x**2+d)**(1/2),x)

[Out]

Integral(1/((a + b*acosh(c*x))**2*sqrt(d + e*x**2)), x)

Maxima [N/A]

Not integrable

Time = 1.10 (sec) , antiderivative size = 580, normalized size of antiderivative = 26.36 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {1}{\sqrt {e x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b*arccosh(c*x))^2/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-(c^3*x^3 + (c^2*x^2 - 1)*sqrt(c*x + 1)*sqrt(c*x - 1) - c*x)/((b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c
^2*x - b^2*c)*sqrt(e*x^2 + d)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1)) + (a*b*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x -
 1)*a*b*c^2*x - a*b*c)*sqrt(e*x^2 + d)) + integrate((c^5*d*x^4 - 2*c^3*d*x^2 + ((c^3*d + 2*c*e)*x^2 + c*d)*(c*
x + 1)*(c*x - 1) + (2*(c^4*d + c^2*e)*x^3 - (c^2*d + e)*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + c*d)/((b^2*c^5*e*x^6
+ (c^5*d - 2*c^3*e)*b^2*x^4 - (2*c^3*d - c*e)*b^2*x^2 + b^2*c*d + (b^2*c^3*e*x^4 + b^2*c^3*d*x^2)*(c*x + 1)*(c
*x - 1) + 2*(b^2*c^4*e*x^5 - b^2*c^2*d*x + (c^4*d - c^2*e)*b^2*x^3)*sqrt(c*x + 1)*sqrt(c*x - 1))*sqrt(e*x^2 +
d)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1)) + (a*b*c^5*e*x^6 + (c^5*d - 2*c^3*e)*a*b*x^4 - (2*c^3*d - c*e)*a*b*x
^2 + a*b*c*d + (a*b*c^3*e*x^4 + a*b*c^3*d*x^2)*(c*x + 1)*(c*x - 1) + 2*(a*b*c^4*e*x^5 - a*b*c^2*d*x + (c^4*d -
 c^2*e)*a*b*x^3)*sqrt(c*x + 1)*sqrt(c*x - 1))*sqrt(e*x^2 + d)), x)

Giac [N/A]

Not integrable

Time = 0.31 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int { \frac {1}{\sqrt {e x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(1/(a+b*arccosh(c*x))^2/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*x^2 + d)*(b*arccosh(c*x) + a)^2), x)

Mupad [N/A]

Not integrable

Time = 3.18 (sec) , antiderivative size = 22, normalized size of antiderivative = 1.00 \[ \int \frac {1}{\sqrt {d+e x^2} (a+b \text {arccosh}(c x))^2} \, dx=\int \frac {1}{{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^2\,\sqrt {e\,x^2+d}} \,d x \]

[In]

int(1/((a + b*acosh(c*x))^2*(d + e*x^2)^(1/2)),x)

[Out]

int(1/((a + b*acosh(c*x))^2*(d + e*x^2)^(1/2)), x)